欢迎来到凡亿课堂

微信扫码登录
账号密码登录
手机快捷登录

微信扫一扫,关注后即可登录

免费注册 忘记密码?

快速登录

快速登录

注册

Hi,欢迎加入凡亿课堂

长度6-15位的密码

请输入手机号码

+86
下一步 如需帮助,请致电客服:0731-8388-2355
dot
PCB中信号线分为哪几类,区别在哪?
dot
LED驱动电源的结构、特点、分类
dot
二极管为什么单向导通的原因
dot
【朱老师IT充电站】 为什么我们应该支持华为
dot
二极管为什么单向导通的原因
dot
Altium中坐标的导出及利用坐标快速布局
dot
【朱老师IT充电站】 为什么我们应该支持华为
dot
USB接口的PCB设计详解知识要点
dot
蛇形天线设计技巧
  • 单片机/工控

    上手学习单片机的常见问题

    单片机是大学电类专业的一门普通课,有些学校甚至把它列为选修课,在众多课程中,没有显出它有多么重要。为什么要学习它呢?因为,市场对学者继承人的需求太少,大量需要的是产品的研发者,研发产品是需要干实际事情的,需要研发工具,而单片机课程就是学习研发工具使用的课程。学习单片机课程与理论课程不一样,不能只做作业,而是要实际使用单片机。很多想学单片机的人问的第一句话就是:“怎样才能学好单片机”?今天和大家讨论对于如何开始学单片机、如何开始上手、如何开始熟练这些问题。1、硬件(1)编程硬件所谓编程就是把单片机运行的程序烧写到单片机存储器中,目前大部分单片机都是使用FLASH存储器,这些存储器的写入次数一般是1000次左右,也有1万次或是10万次的。编程也叫程序下载或是烧写。(2)实时仿真硬件实时仿真是使用PC机,用软件监视在单片机中实际运行的程序,也就是当程序下载到单片机中后,实时运行程序,在程序中设置断点,通过仿真接口,监视和控制程序的运行。这个过程其实就是调试程序(实际验证程序的正确性)。编程器和仿真器可以是一个装置,也可以是各自独立的装置。2、软件单片机开发需要单片机开发软件的支持,软件分为:编程软件:该软件支持编程器工作,帮助编程器把程序写入单片机。实时仿真软件:该软件可以在仿真接口的支持下,调试单片机程序。虚拟仿真:该类软件支持在没有单片机硬件情况下的单片机程序调试。支持C语言:所有的单片机开发软件都支持汇编语言编程,但是目前人们更喜欢C语言编程,主要是C语言功能强大,可以缩短开发时间。目前就有支持上述功能的软件,例如51系列的Keil51、PIC系列的MPLAB,MSP430系列的IAR等。3、学习单片机的手段学习单片机的手段分为如下几种:买本单片机书,仔细研究。网上下载一个具有仿真功能的单片机开发软件(最好支持C语言),在计算机上对单片机虚拟仿真。购编程器(支持编程器的下载软件有编程器商提供)和实验板(又称为演示板或是目标板),网上下载开发软件。在开发软件的支持下对单片机虚拟仿真,确认单片机程序正确后,用编程器将程序下载到单片机中,观察程序的实际运行。购仿真接口和实验板,在网上下载单片机开发软件(支持编程、虚拟仿真、实时仿真和C语言),在虚拟仿真完成后,将程序下载到单片机中实时仿真。对于个人学习单片机,具有上述(4)的条件已经是很好了。学习单片机过程中的困扰单片机种类很多,各个公司提供的单片机、开发硬件和软件功能、价格都不一样,对于初学单片机有很多困惑。4、单片机问题目前单片机很多,学哪一个,其实学哪一个都可以,单片机虽然型号不同,但是芯片内部的资源种类都差不多,而且这些资源的使用方法也大同小异,可以说学会一种,其他种将融会贯通。究竟学哪一种,主要看具备的条件。51系列是老型号,书多、资料多、软件开放和硬件支持还可以,特别是Atmel公司的产品AT89系列,很多人就是学习这款单片机发家致富的。AVR90系列,该系列也是Atmel公司的产品,指令少,学起来容易,芯片种类多,适合各种场合和需要,根据有关资料显示,目前该单片机芯片的使用数量很大,大有超过51系列芯片数量的趋势。PIC系列,该系列是Microchip公司的产品,种类多,芯片抗干扰能力强,使用的人很多,特别是PIC16F877芯片,由于适合学校使用,在该公司大学计划的支持下,免费赠送开发器和实验板,因而使用该芯片的人群大增,也是可以和51系列单片机抗衡的单片机。MSP430系列,是TI公司的产品,最近几年才被杭州利尔达公司引进,是16位、超低功耗单片机,特别适合手持设备等低功耗设备的开发,实际上,由于该系列引脚多,内部资源多(具有硬件乘法器),所以在很多产品开发上都有用武之地,据有关人士预测,该系列是最具前途的单片机。还有很多单片机型号,由于不太了解,不敢妄加评论,但可以想象,一定是不错的单片机,否则就不会在竞争激烈的市场中存在。5、开发软件问题不同种类的单片机都配套有相应的开发软件,这些软件很多都是专业软件公司开发的。51系列,目前开发软件是Keil51,该软件支持C语言,但是在网上下载的版本,只支持2K程序。PIC系列的开发软件是MPLAB,在HI-TECH公司C语言支持软件PICC的支持下,该软件很好用,但是PICC是需要激活密码才能运行的。MSP430系列的开发软件是IAR,该软件有开放1个月的全功能限期版本和C语言4k支持版本,可见该系列的软件开放是最好的。哪种单片机的开发软件开放的好,就会引起人们对该单片机的兴趣,单片机提供商也深谙此道,所以网上经常可以找到更开放版本的软件。6、仿真接口仿真接口,又称为仿真器,老式单片机由于没有FLASH存储器,所以仿真编程难度很大,新型号的单片机,几乎都有FLASH存储器的芯片,这样的芯片都支持在电路编程(在系统编程),所谓在电路编程,就是用3~5根线就可以将程序写入单片机,并能够将单片机内的程序运行情况、寄存器内容等信息传输到PC机上。这种编程方法需要在单片机与PC机之间安装一个仿真接口,该接口一般需要购买。AT89S51、PIC16F877就是具有这种能力的单片机。但是,对于初学者来说,支持该单片机编程和仿真的接口需要购买,而且简单接口在仿真时会占用芯片资源,给单片机系统开发带来不便。MSP430系列单片机也是具有这种能力的单片机,但是该单片机采用标准JTAG接口,JTAG是一种标准(IEEE1149.1),是为测试芯片而制定的,目的是用TCK、TDI、TDO和TMS四个信号来测试芯片的内部状态,为什么测试芯片还需要专门制定标准呢?这是因为复杂芯片引脚太多,特别是还有些芯片一旦安装到多层电路板上就无法看到引脚,更不要说测量了,这时就可以在计算机软件的支持下通过JTAG接口,对芯片进行测量,如果各个公司的芯片都符合该标准,就可以将各个芯片的JTAG口串联起来(外国人称为菊花链),无论在电路板上有多少芯片,只需4个引脚,就可以测量电路板上的所有芯片。既然可以测量芯片,当然可以将数据写入芯片,在可编程逻辑器件的数据下载中也使用JTAG接口,出现了在系统编程(ISP)的概念。也就是,即使可编程逻辑器件安装到了系统中,也可以对其内部电路进行修改,JTAG技术和EDA软件的进步,使可编程逻辑器件的开发与使用得到快速发展。单片机也是在向这个方向努力,前几年出现在市场上的C8051单片机就是使用JTAG接口的单片机,不幸的是该单片机JTAG接口装置和开发软件很贵,阻碍人们使用该单片机。使用JTAG口,必须在计算机与芯片JTAG接口之间连接一个接口装置,该装置随芯片而异,实际上JTAG接口装置都是很简单的(就是一个缓冲器),但是由于各个公司的早期产品不完全支持JTAG接口,而JTAG接口装置又必须兼容这些早期产品,就使得JTAG接口装置变的复杂了。7、实验板实验板是学习单片机所必须的,实验板又称为演示板、目标板,其实就是具有单片机的电路板,实验板可以购买,各个单片机的供应商都提供多种多样的实验板。实验板也可以根据需要自制,自制实验板是具有挑战的,需要学会画电路板图。选择单片机类型软件:支持C语言,免费下载。仿真器:用于仿真编程的JTAG接口装置可以自制(很重要,可以节省开支)。单片机:型号多、功能强、资源多、功耗低,程序存储器容量大。声明:本文来源于网络,版权归原作者所有,如涉及版权或对版权有疑问,请第一时间与我们联系

    2020-07-08 11:25:24 0 发布人:凡亿教育
  • EMC|EMI

    EMC设计中信号回流的重要性

    任何注入到系统中的电流最终都要回到源端。因此,信号不仅仅是在信号线上传播,同时也是在参考平面上传播,如下图所示。所以保持参考平面的完整和低阻抗,与保持信号线的完整和低阻抗对系统同样重要。在传统的低速设计中,系统中的回路电流沿着最小的电阻路径回流,而在高速系统中,电流沿着最小的阻抗回路回流。在高频下,回路的电感表现出的感抗远远大于其本身的电阻值,因此最小阻抗路径也就是最小电感的路径。通常情况下,最小电感的路径就在信号线的正下方,如下图:我们把提供给信号线回路电流的媒介称作参考平面。在实际系统中,参考平面可以用VCC,也可以用GND,重要的一点是要保证参考平面的连续性。一对差分信号之间可以互为参考,它们对参考平面的依赖没有那么强。如果在PCB上,信号的参考平面出现较大的不连续区域,如一条沟壑,那么在这个沟壑处,信号的回路电流无法通过紧贴信号走线线面的路径传送,而是必须绕开这个沟壑。这样就给回流路径增加了感抗,使得接收端信号的高频分量衰减严重,甚至出现台阶。如下图:在设计中尽量不要让信号的回路中存在沟壑,如果沟壑是不可避免的,可以在沟壑的两端放置一些去耦电容,构成一个跨越沟壑的交流通路,提供给高速的回路电流。另一种常见的回路不连续的情况是信号在不同参考平面之间切换,同样会给电源系统引入噪声。下图所示为4层PCB结构,信号首先在第一层传输,然后通过一个过孔转到第四层继续传输,第二层和第三层为参考平面。当信号在第一层时,回路电流在信号路径对面的参考层第二层传播,当信号在第四层时,回路电流同样在信号路径对面的参考层第三层传输。那么当信号穿过信号过孔时,回路电流如何从第三层传到第二层呢?如果参考平面之间没有直流通路,回路电流只能通过两个平面之间的容性耦合传递。在下图中,我们可以清楚的看到回路电流是如何从第三层耦合到第二层的。由于平面之间的耦合程度有限,回路电流在跃迁过程中,将遇到较大的阻抗。因此回路电流在这里将在两个平面上产生一个感应噪声,传播到系统的其他地方。由于这个噪声非常类似于地弹噪声,因此又将其称为回路地弹。那么,如何减小回路地弹噪声呢?如果这两个平面具有同样的电势,例如它们都是地平面,那么最直接有效的方法就是在信号过孔附近加上几个地过孔,直接连接两个平面,如下图所示,使回路电流就近通过这几个过孔,保持回路的连续性。如果这两个平面的电势不一样,例如一个是VCC,另一个是GND,那么要减弱这个回路地弹噪声对电源系统造成的影响,两个平面之间增加一些去耦电容,为回路电流提供一个低阻抗的瞬态交流回路。声明:本文来源于网络,版权归原作者所有,如涉及版权或对版权有疑问,请第一时间与我们联系

    2020-07-08 11:03:28 3 发布人:电子视界
  • 原理开发

    怎么快速跳转到原理图工作区

    我们在原理图页面进行操作时,经常会因为缩小或者拖拽导致原理图工作区消失,如图3-9所示,那么如何快速跳转到原理图工作区呢?                                          如图3-9所示执行【视图】-【适合所有对象】命令,或者按快捷键“VF”就可以快速跳转回原理图工作区,如图3-10所示。                                               如图3-10所示 

    2020-07-08 10:51:20 4 发布人:零七三一
  • 原理开发

    电子设备运行时,有时听到"叽"的噪音是什么引起的?

    在笔记本电脑、平板电脑、智能手机、电视机以及车载电子设备等运行时,有时会听到"叽"的噪音,该现象称为"啸叫"。导致"啸叫"出现的原因可能在于电容器、电感器等无源元件。电容器与电感器的发生啸叫的原理不同,尤其是电感器的啸叫,其原因多种多样,十分复杂。本文中将就DC-DC转换器等电源电路的主要元件——功率电感器的啸叫原因以及有效对策进行介绍。     功率电感器啸叫原因      1. 间歇工作、频率可变模式、负荷变动等可能导致人耳可听频率振动声波是在空气中传播的弹性波,人的听觉可听到大约20~20kHz频率范围的"声音"。在DC-DC转换器的功率电感器中,当流过人耳可听范围频率的交流电流以及脉冲波时,电感器主体会发生振动,该现象称为"线圈噪音",有时也会被听成啸叫现象(图1)。随着电子设备的功能不断强化,DC-DC转换器的功率电感器也成为了噪音发生源之一。DC-DC转换器通过开关器件进行ON/OFF,由此产生脉冲状电流。通过控制ON的时间长度(脉宽),可得到电压恒定的稳定直流电流。该方式称为PWM(脉冲调幅),其作为DC-DC转换器的主流方式获得广泛使用。但DC-DC转换器的开关频率较高,达到数100kHz~数MHz,由于该频率振动超出了人耳可听范围,因此不会感受到噪音。那么,为什么DC-DC转换器的功率电感器会发出"叽"的啸叫呢?可能的原因有几个,首先可能的是以节省电池电力等为目的,让DC-DC转换器进行间歇工作的情况,或将DC-DC转换器从PWM方式切换为PFM(脉冲调频)方式,在频率可变模式下运行的情况。图2所示为PWM方式与PFM方式的基本原理。2. PWM调光等DC-DC转换器间歇工作导致的啸叫出于节能等目的,移动设备液晶显示器背光自动调光功能等引进了DC-DC转换器间歇工作。这是根据使用环境照度,对背光亮度进行自动调光,从而延长电池使用时间的系统。该调光有多种方式,其中,控制LED亮灯时间及熄灯时间长度的方式称为PWM调光。PWM方式调光系统的优点在于,调光引起的色度变化较少,其主要用于笔记本电脑以及平板电脑等的背光中。PWM调光通过200Hz左右的较低频率使DC-DC转换器进行间歇工作,并通过反复进行亮灯/熄灭操作来调整亮度。在亮灯/熄灭的恒定循环中,调长亮灯时间时将会变亮,调短时则会变暗。在200Hz左右的间歇工作中,眼睛基本上不会察觉背光频闪情况。但由于其处于人耳可听频率中,因此当基板上贴装的功率电感器中流过间歇工作的电流时,电感器主体将会因频率影响而发生振动,从而导致出现啸叫。注释:占空比DC-DC转换器中,相对于开关周期(开关器件的ON时间+OFF时间)的ON时间比称为占空比。对LED进行PWM调光时,亮灯时间/(亮灯时间+熄灯时间)称为占空比,并表示亮度。3. 频率可变模式DC-DC转换器导致的啸叫PWM方式DC-DC转换器的特点在于,在普通工作中,其效率可高达大约80~90%以上。但待机时间等轻负荷情况下,效率将会严重降低。开关造成的损耗与频率成正比。为此,在轻负荷情况下会发生恒定开关损耗,因此会使效率降低。因此,为了改善该问题,在轻负荷情况下使用自动将PWM方式替换为PFM(脉冲调频)方式的DC-DC转换器。PFM方式是配合负荷减轻,在固定ON时间的情况下,对开关频率进行控制的方式。由于ON时间恒定,因此通过延长OFF时间,开关频率将会渐渐降低。由于开关损耗与频率成正比,因此通过降低频率可在轻负荷情况下实现高效化。但降低后的频率将会进入人耳可听的约20~20kHz的范围,此时功率电感器将会发生啸叫。4. 负荷导致的啸叫出于节省电池电力的目的,笔记本电脑等移动设备中运用有各类省电技术,为此可能会导致电感器发生啸叫。例如,出于兼顾低耗电量以及处理能力的目的,笔记本电脑CPU中带有周期性变更消耗电流的模式,当该周期处于人耳可听频率范围时,功率电感器可能会因该影响而产生啸叫。注释:DC-DC转换器中功率电感器的作用电感器可使直流电流顺利流过,而对于交流电流等发生变化的电流,则通过自感应作用,朝阻止发生变化的方向产生电动势,发挥电阻的作用。此时,电感器将电能转换为磁能,将其积攒起来,并在转换成电能后将其放出。该能量的大小与电感器电感值成正比。功率电感器也被称为功率线圈、功率扼流圈,是用于DC-DC转换器等开关方式电源电路中的主要元件,通过与电容器进行协调,使开关器件ON/OFF所产生的高频脉冲更为平滑化。由于电源电路的功率电感器中会流过大电流,因此绕组型为主流产品。这是因为,通过将高导磁率的磁性体(铁氧体或软磁性金属)用于磁芯中,以较少巻数实现高电感值,从而可使产品更为小型化。图3所示为使用功率电感器的DC-DC转换器(非绝缘型及斩波方式)基本电路。       功率电感器主体振动以及噪音扩大的机制      当流过人耳可听范围频率的电流时,功率电感器主体发生的振动会引起啸叫。其振动原因以及噪音原因有以下几种可能。    振动原因    ➀磁性体磁芯磁致伸缩(磁应变)作用    ➁磁性体磁芯磁化导致相互吸引    ➂漏磁通导致绕组振动    噪音放大原因    ➀与其他元件接触    ➁漏磁通导致对周边磁性体产生作用    ➂与包括基板在内的组件整体固有振动数一致导致产生功率电感器啸叫的振动原因以及噪音扩大原因如图4进行了总结。以下对这些原因的主要内容进行说明。产生振动的各种原因与作用振动原因➀:磁性体磁芯磁致伸缩(磁应变)对磁性体施加磁场使其磁化后,其外形会发生细微变化。该现象称为"磁致伸缩"或"磁应变"。以铁氧体等磁性体为磁芯的电感器中,绕组所产生的交流磁场会使磁性体磁芯发生伸缩,有时会检测到其振动声。磁性体是称为磁畴的小范围的集合体(图5)。磁畴内部的原子磁矩朝向相同,因此磁畴是一个自发磁化朝向恒定的微小磁铁,但磁性体整体却不会表现出磁铁的特性。这是因为,构成磁性体的多个磁畴,其排列使自发磁化相互抵消,因此从表面上来看处于消磁状态。从外部对处于该消磁状态的磁性体施加磁场时,各个磁畴会将自发磁化朝向统一为外部磁场方向,因此磁畴范围会逐渐发生变化。该现象由磁畴间边界——磁壁的移动所引起。由此,随着磁化的进行,处于优势的磁畴逐渐扩大其范围,最终成为单一磁畴,并朝向外部磁场方向(饱和磁化状态)。该磁化过程中,在原子水平下会发生微小的位置变化,而在宏观水平下,则会表现为磁致伸缩,即磁性体的外形变化。磁致伸缩导致的外形变化极其微小,约为原尺寸的1万分之1~100万分之1,但如图5所示,在磁性体上绕有线圈的状态下流过电流,当施加所产生的交流磁场时,磁性体将会反复伸缩,并产生振动。为此,在功率电感器中,无法完全消除磁致伸缩所导致的磁性体磁芯振动。功率电感器单体振动水平虽小,但当贴装至基板上时,若其振动与基板的固有振动数一致,则振动将会被放大,从而会听到啸叫。振动原因➁:磁性体磁芯磁化导致相互吸引磁性体被外部磁场磁化时将会表现出磁铁性质,从而与周围磁性体相互吸引。图6所示为全屏蔽型功率电感器示例。此为闭合磁路结构的功率电感器,但鼓芯与屏蔽磁芯(环形磁芯)间设有间隙,噪音有时会从该处发出。绕组中流过交流电流时,因产生的磁场而被磁化的鼓芯与屏蔽磁芯将会因磁力而相互吸引,若该振动在人耳可听频率范围内时,则会听到噪音。鼓芯与屏蔽磁芯之间的间隙通过粘接剂进行封闭,但为了防止因应力产生开裂,因此不会使用较硬的材料,从而无法完全抑制因相互吸引所导致的振动。振动原因➂:漏磁通导致绕组振动不带有屏蔽磁芯的无屏蔽型功率电感器中,不会因前述鼓芯与屏蔽磁芯磁化导致的相互吸引而产生啸叫。但在无屏蔽型产品中会发生其他问题。由于无屏蔽型产品为开放磁路结构,因此漏磁通会对绕粗产生作用。由于绕组中会流过电流,因此根据佛来明左手定则,力会作用于绕组上。为此,当交流电流流过绕组时,绕组本身会发生振动,从而产生啸叫(图7)。    噪音放大的各种原因     噪音放大原因➀ 与其他元件接触在高密度贴装有多个电子元件及设备的电源电路基板中,若电感器与其他元件接触,则电感器的微小振动将会被放大,从而会听到啸叫。噪音放大原因➁ 漏磁通导致对周边磁性体产生作用当电感器附近存在屏蔽罩等磁性体时,磁性体会因电感器漏磁通影响产生振动,从发生啸叫。噪音放大原因➂ 与包括基板在内的组件整体固有振动数一致通常情况下,用于电感器等产品中的小型磁性体磁芯单体,其磁致伸缩导致的空气振动基本不会被识别为啸叫。但电感器由多个部件组合而成,且贴装于基板上时,将会产生多个人耳可听频率的固有振动数,该振动放大后便会形成啸叫。同时,若与组件整体的多个固有振动数相一致时,在安装至组件中之后有可能会发生啸叫。图8所示为,通过运用了FEM(有限元法)的计算机模拟器对贴装有功率电感器的基板振动情况进行分析的示例。所使用的分析模型中,功率电感器配置于基板(FR4)中央,并对基板长边2面进行了固定。一般情况下,结构体发生共振的固有值(固有振动数)拥有多个,与此相应,会有各种各样的振动模式。在该"功率电感器+基板"的分析模型中,随着频率的提高,各固有振动数也会出现各种各样的振动模式。图8所示的1次、2次、5次、18次振动模式中,功率电感器可能是振动源。其中,1次模式的振动频率与功率电感器单体的振动频率基本相同。但值得注意的是,Z方向(高度方向)振动较为显著的2次模式在功率电感器单体的情况下出现了较高的频率,但固定于基板上后出现了极低的频率。《分析模型》功率电感器配置于基板(FR4)中央。边界条件:固定基板长边2面。2次模式 :2262Hz~5次模式 :4048Hz~5次模式 :4048Hz~18次模式 :16226Hz~图8:通过计算机模拟器对"功率电感器+基板"的振动情况进行分析的示例        功率电感器的啸叫对策        以下就DC-DC转换器的功率电感器啸叫对策重点进行了总结。重点1:避免流过人耳可听频率电流避免流过人耳可听频率电流是最为基本的对策。但以节能等为目的的间歇工作以及频率可变模式的DC-DC转换器等无法避免人耳可听频率的通电时,请尝试以下静音化对策。重点2:周围不放置磁性体不在电感器附近放置可能受漏磁通影响的磁性体(屏蔽罩等)。不得已需要接近时,则应使用漏磁通较少的屏蔽型(闭合磁路结构)的电感器,同时还应注意放置方向。重点3:错开固有振动数有时通过错开固有振动数或提高振动数可降低啸叫。例如,通过变更电感器形状、种类、布局、基板紧固等条件,包含基板的组件整体固有振动数将会发生变化。此外,啸叫常见于7mm尺寸以上的大型功率电感器中。通过采用5mm以下的小型功率电感器,固有振动数将会提高,从而可降低啸叫。重点4:置换为金属一体成型型如上所述,在全屏蔽型功率电感器中,鼓芯与屏蔽磁芯会因磁性相互吸引,从而在间隙部位会发生啸叫。同时,在无屏蔽型功率电感器中,漏磁通引起的电线振动会导致产生啸叫。针对此类功率电感器啸叫问题,置换为金属一体成型型是有效的解决方案。这是通过在软磁性金属磁粉中嵌入空心线圈后进行一体成型的功率电感器。由于没有间隙,因此磁芯之间不会相互吸引,同时,由于固定线圈时使其与磁性体形成一体化,因此还可避免因磁通造成绕组振动的问题。不仅如此,TDK的产品还采用了磁致伸缩较小的金属磁性材料,因此可抑制因磁致伸缩导致的振动,通过置换无屏蔽型或全屏蔽型产品可有望降低啸叫。      全屏蔽型与金属一体型的噪音比较      以下将全屏蔽型与半屏蔽型功率电感器(TDK产品、约6mm尺寸),以及全屏蔽型与金属一体成型型功率电感器(TDK产品、约12mm尺寸)作为测量样本,对噪音的发生情况进行了调查。在消声盒内部安装麦克风,以0A~额定电流的正弦波电流对安装于基板上的测量样本通电60秒,并以人耳可听频率20Hz~20kHz进行扫频,此间记录其峰值声压(图8)。如图表所示,比较全屏蔽型与半屏蔽型后可发现,声压等级会因频率而有所不同。比较全屏蔽型与金属一体成型型产品时,其中的差异较为显著。全屏蔽型中,在大范围的频带内产生有30~50dB左右水平的噪音。而在金属一体成型型中,在大范围频带内,其与背景噪音处于同等低的水平,即使在峰值部位,其与全屏蔽型相比也抑制了大约20dB。抑制20dB也就意味着仅为10分之1的水平,由此可见,置换为金属一体成型型是有效的对策。免责声明:本文素材来源TDK,版权归原作者所有。如涉及作品版权问题,请与我联系删除。

    2020-07-08 10:19:56 101 发布人:电子视界
  • Altium Designer

    AD怎么更改原理图栅格的显示模式?

     绘制原理图时可以根据习惯来更改原理图栅格的显示模式和颜色来提高设计效率,那么AD中如何更改原理图栅格的显示模式呢?    1、打开原理图文件按快捷键TP/OP进入优选项设置界面,然后找到Schematic-Grids如图所示:                                                                  如图所示      2、在栅格栏将显示模式更改为Line Grid,颜色设置为黑色(Dot Grid为点状,Line Grid为线状),设置完成后点击确定,如图所示。                                                                   3、栅格属性及颜色设置完成后点击优选项界面右下角确定选项,就设置成功了,如图所示。                                             

    2020-07-08 11:11:32 2 发布人:零七三一
  • Altium Designer

    在AD软件中应该如何对同类型的PCB封装进行更新呢?

    1.选择其中的一个元件单击右键,点击查找相似对像,进行按一样的封装进行查找,如图6-53所示,然后点击确定,所有相同封装的元件都被选中了  2. 单击pcb界面右下角的panels选项,选择Properties选项,打开属性框,如图6-54所示  3. 在属性框中找到Footprint Name,单击右边箭头所指的地方就可以浏览库,进行合适的封装替换了,如图6-55所示  

    2020-07-08 11:16:27 5 发布人:零七三一
  • 原理开发

    电器上的这些符号有什么特别含义?

    细心的朋友可以会发现,在电器上可以看见一些比如CCC的符号,这些符号有什么特别的含义呢?下面电路菌跟大家好好讲解一下吧!大多数国家特别是发达国家的政府,为了保护消费者的利益,都制定了一些法律条文来保护产品的安全,对涉及安全、卫生、环境保护和电磁干扰等项目的产品,都直接或间接地要求实行强制性的认证。比如在欧盟国家要求所有电器产品必须满足CE。这就意味着对我们的产品而言,必须满足当地的标准后才能进入市场进行销售。▲ 常见认证标志为了减少风险,生产厂家、中间商(出口商和进口商)及零售商一般会先选择第三方机构或官方指定的测试部门进行测试认证,获得相应合格证书或许可证后才能批量生产销售。 比较常见的产品认证有:中国CCC,欧盟CE,欧盟ROHS,美国UL,加拿大CSA,德国TUV,德国GS,国际体系CB,南非SABS,日本PSE等等。 1、CCC认证的全称为“强制性产品认证制度”它是中国政府为保护消费者人身安全和国家安全、加强产品质量管理、依照法律法规实施的一种产品合格评定制度。所谓3C认证,就是中国强制性产品认证制度。 2、CE标志在欧盟市场属强制性认证标志不论是欧盟内部企业生产的产品,还是其他国家生产的产品,要想在欧盟市场上自由流通,就必须加贴“CE”标志,以表明产品符合欧盟《技术协调与标准化新方法》指令的基本要求。这是欧盟法律对产品提出的一种强制性要求。3、RoHSRoHS是由欧盟立法制定的一项强制性标准,它的全称是《关于限制在电子电器设备中使用某些有害成分的指令》。该标准主要用于规范电子电气产品的材料及工艺标准,使之更加有利于人体健康及环境保护。该标准的目的在于消除电机电子产品中的铅、汞、镉、六价铬、多溴联苯和多溴二苯醚共6项物质,并重点规定了铅的含量不能超过0.1%。 4、ULUL安全试验所是美国最有权威的,也是世界上从事安全试验和鉴定的较大的民间机构。它是一个独立的、营利的、为公共安全做试验的专业机构。它采用科学的测试方法来研究确定各种材料、装置、产品、设备、建筑等对生命、财产有无危害和危害的程度;确定、编写、发行相应的标准和有助于减少及防止造成生命财产受到损失的资料,同时开展实情调研业务。 5、CSACSA是加拿大最大的安全认证机构,也是世界上最著名的安全认证机构之一。它能对机械、建材、电器、电脑设备、办公设备、环保、医疗防火安全、运动及娱乐等方面的所有类型的产品提供安全认证。 6、TUVTUV是德国专为元器件产品定制的一个安全认证标志,在德国和欧洲得到广泛的接受。同时,企业可以在申请TUV标志时,合并申请CB证书,由此通过转换而取得其他国家的证书。而且,在产品通过认证后,德国TUV会向前来查询合格元器件供应商的整流器机厂推荐这些产品;在整机认证的过程中,凡取得 TUV标志的元器件均可免检。7、GS认证GS认证以德国产品安全法为依据,按照欧盟统一标准EN或德国工业标准DIN进行检测的一种自愿性认证,是欧洲市场公认的德国安全认证标志。8、CB体系CB体系(电工产品合格测试与认证的IEC体系)是IECEE运作的一个国际体系,IECEE各成员国认证机构以IEC标准为基础对电工产品安全性能进行测试,其测试结果即CB测试报告和CB测试证书在IECEE各成员国得到相互认可的体系。目的是为了减少由于必须满足不同国家认证或批准准则而产生的国际贸易壁垒。IECEE 是国际电工委员会电工产品合格测试与认证组织的简称。 9、SABSSABS是南非的一个中立的第三方认证机构,负责南非的体系认证及产品认证。除制定标准的职责外,SABS还代表国家管理强制性规范标准,对符合规范的产品,授予标志使用权,此外还负责对符合ISO9001、ISO9002的企业颁发证书,并代表国家和一些主要的购买商负责装船前的检验和测试,颁发合格证书。 10、PSEPSE认证是日本强制性安全认证,用以证明电机电子产品已通过日本电气和原料安全法或国际IEC标准的安全标准测试。免责声明:本文来源网络,版权归原作者所有。如涉及作品版权问题,请与我联系删除。

    2020-07-08 11:11:38 2 发布人:电子视界
  • Altium Designer

    AD原理图软件与PCB软件应该如何进行交互式操作呢?

    1.首先在pcb界面快捷键op调出优选项界面,进行如图6-50所示设置,勾选交互选择 2. 将原理图和pcb文件放置在同一个工程目录下面,如图6-51所示 3. 执行菜单命令【工具】,将里面的交叉选择模式进行打开,如图6-52,注意:原理图跟pcb都有这个交叉选择模式,都要进行打开   

    2020-07-08 10:22:18 1 发布人:零七三一
  • PCB技术

    最齐全差分处理方法详解与信号分析

    差分线是PCB设计中非常重要的一部分信号线,信号处理要求也是相当严谨,今天为大家介绍下差分信号的原理以及其在PCB设计中的处理方法。什么是差分信号差分传输是一种信号传输的技术,区别于传统的一根信号线一根地线的做法,差分传输在这两根线上都传输信号,这两个信号的振幅相等,相位相差180度,极性相反。在这两根线上传输的信号就是差分信号。  差分信号与单端信号的区别单端信号指的是用一个线传输的信号,一根线没参考点怎么会有信号呢?参考点就是地啊。也就是说,单端信号是在一跟导线上传输的与地之间的电平差。那么当你把信号从A点传递到B点的时候,有一个前提就是A点和B点的地电势应该差不多是一样的。 差分信号指的是用两根线传输的信号,传输的是两根信号之间的电平差。当你把信号从A点传递到B点的时候,A点和B点的地电势可以一样也可以不一样,但是A点和B点的地电势差有一个范围,超过这个范围就会出问题了。 一个差分信号是用一个数值来表示两个物理量之间的差异。从严格意义上来讲,所有电压信号都是差分的,因为一个电压只能是相对于另一个电压而言的。在某些系统里,系统地被用作电压基准点。当地当作电压测量基准时,这种信号规划被称之为单端的。我们使用该术语是因为信号是用单个导体上的电压来表示的。另一方面,一个差分信号作用在两个导体上。信号值是两个导体间的电压差。尽管不是非常必要,这两个电压的平均值还是会经常保持一致。我们用一个方法对差分信号做一下比喻,差分信号就好比是跷跷板上的两个人,当一个人被跷上去的时候,另一个人被跷下来了 - 但是他们的平均位置是不变的。继续跷跷板的类推,正值可以表示左边的人比右边的人高,而负值表示右边的人比左边的人高。0 表示两个人都是同一水平。这两个跷跷板用一对标识为V+和V-的导线来表示。当V+>V-时,信号定义成正极信号,当V+

    2020-07-08 13:29:45 4 发布人:零七三一
  • PCB技术

    PCB设计过孔载流能力分析

    作为一个做设计的新手,在刚学PCB设计时,经常会由于电源通道处理不当(过孔数量打的不够、电源通道路径不够宽),而导致PCB设计不合格,生产出来的PCB报废。那么,我们在做PCB设计时电源通道处过孔需要怎么打哪个类型的?过孔数量要打多少个?本篇文章将给大家作一些详细的介绍。过孔定义:过孔也称金属化孔。在双面板和多层板中,为连通各层之间的印制导线,在各层需要连通的导线的交汇处钻上一个公共孔,即过孔。过孔的参数主要有孔的外径和钻孔尺寸。一般我们常规的PCB板生产都是按IPC2级标准生产,生产的孔铜厚度一般为0.8mil到1mil左右(大家可以查一下IPC2级标准的具体内容)。生产时大家以为的生产出来的过孔是这个理想的情况(如下图示),孔的大小规整,孔铜厚度非常匀称: 理想很丰满,不过现实却。。。。。。。实际我们生产出来的PCB上的过孔是这种情况(下图示,生产质量较好的情况下)。   大家可以看到,一般生产出来的PCB的过孔孔壁的镀铜厚度可能上下宽,中间窄,所以最窄的地方极限可能是0.7mil。现在,我们可以基于最窄孔铜厚度来计算温升在10度情况下(常规PCB使用情况下),我们所使用的不同大小过孔的载流能力,结果如下图示: 看到上面表格,大家是不是会产生疑问:我们做PCB设计时,在处理电源时用大的孔径(16mil、20mil)就好了,可以保证其通流能力。但为什么一般都使用10mil、12mil过孔呢?理由有以下几个:1、 对于常规板,用10mil、12mil过孔是可以满足其承载电流的能力的。2、 用10mil、12mil过孔,在做PCB设计时,设计效率会更高,方便我们设计。我们知道单个过孔载流能力,是不是直接用公式除一下电流设计值然后就可以得到相应过孔数量,在设计时打此数量就可以保证设计安全性呢?我们来看一下某公司的仿真案例: 20A电流,打了20个12mil过孔,按照每个孔承载1.2A来计算,应该非常安全。但是实际上电流并没有你想象的听话,并不是在20个过孔里面平均分配的。简单的DC仿真,就可以看到过孔电流的情况。有些过孔走了2.4A的电流,有些才200mA。当然,这个设计可能最终并不会有太大风险。因为12mil的过孔在温升30度的时候是可以承载2A以上电流的。但是,如果不均匀性进一步放大呢?这个是和你电流的通道,过孔的分布、数量都有关系的,万一某个过孔走了3A甚至4A的电流呢?并且这时候你打25个或者30个过孔,只要没有在电流的关键位置,提供的帮助并不会很大。原因就是电流没有你想象的听话,不是均匀分布。这个结论在确定铜皮宽度时也是成立的。我们从很多的仿真结果都能发现,当大电流设计在一层铜皮不够用的情况下,多增加一层来走电流,电流也并不会平均分配。一般我们在做设计的时候会考虑在电源通道多打几个过孔,虽然不能完全确认打的过孔有效,但考虑到生产的因素,比如生产时电源通道某个过孔会由于生产不合格而失效,多打的过孔有一定的补充作用。

    2020-07-08 11:11:42 10 发布人:零七三一
推荐文章
热门文章
文章分类

凡亿课堂官方二维码

凡亿教育

咨询电话:0731-8388-2355

公司地址:长沙麓谷高新区麓谷新长海中心B3栋3楼304室

版权所有:湖南凡亿智邦电子科技有限公司